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Abstract--Laminar forced convection in a circular tube is investigated with a boundary condition of 
prescribed axially varying wall heat flux, under the assumptions of hydrodynamically developed flow and 
of negligible axial conduction and viscous dissipation in the fluid. A condition on the asymptotic behaviour 
of the axial distribution of wall heat flux is established which is fulfilled by power-law varying axial 
distributions and which guarantees the existence of a thermally developed regime. It is proved that for all 
the axial distrf~utions which fulfil this condition the asymptotic value reached by the local Nusselt number 
is 48/11, i.e. lhe same which holds for a uniform wall heat flux. For some power-law varying axial 
distributions of wall heat flux, a finite difference determination of the thermal entrance region is performed. 

In every numerical solution, the local Nusselt number tends asymptotically to 48/11. 

INTRODUCTION 

Laminar  forced convection in circular ducts has been 
widely studied and important  results obtained in this 
field have been reviewed in refs. [1, 2]. In most of these 
studies, the effects of axial conduction and of viscous 
dissipation in the fluid are neglected and various kinds 
of boundary  condition at the wall of the tube are 
analysed. In particular, Sparrow and Patankar  [3] 
show that the following boundary conditions:  

(a) qw -- constant ; 
(b) Tw = constant  ; 
(c) convective heat transfer to a fluid environment 

with a uniform temperature and a uniform heat 
transfer coefficient ; 

are particular cases of the boundary  condit ion of 
exponentially varying wall heat flux, for a thermally 
developed regime. Indeed, a widely accepted result is 
that only axial distributions of wall heat flux which 
become exponential in the limit x ~ ~ are compatible 
with a thermally developed regime [1, 3-5]. Hasegawa 
and Fujita [5] have proved that the wall heat flux is 
exponential if the quantity (Tw--T) / (Tw-Tb)  is 
invariant along the axis of the tube. Obviously, the 
invariance of (T+ - T)/(Tw-- Tb) along the flow direc- 
tion implies the invariance of the Nusselt number  
along this direction [6]. However, the existence of an 
asymptotically invariant radial distribution of dimen- 
sionless temperature is a condit ion much weaker than 
the existence of a radial distribution of dimensionless 
temperature which is exactly invariant along the axis 
of the tube for a finite length. Therefore, although the 

thesis stated in ref. [5] is correct, it does not  imply 
that an exponential variation of the wall heat flux 
represents a necessary condition for the existence of 
an asymptotically invariant radial distribution of 
dimensionless temperature. 

With the exception of studies on sinusoidal wall 
heat flux variation (see [7] and references therein), 
analyses of boundary conditions which cannot  be 
reduced to that of  exponential wall heat flux are very 
rare in the literature. For  example, linearly varying 
axial distributions of wall heat flux have been studied 
by Hasegawa and Fuji ta [5]. However, only turbulent 
forced convection is analysed in ref. [5]. 

The aim of this paper is to prove that, for laminar 
forced convection in a circular duct with a fully 
developed velocity profile, every boundary condition 
of a prescribed wall heat flux qw(X) such that 

1 dqw(x) 
lim = 0 (1) 

. . . .  qw(X) dx 

yields a thermally developed regime, under the 
assumption that both axial conduction and viscous 
dissipation in the fluid are negligible. Moreover it is 
shown that, for the class of axial distributions of wall 
heat flux which fulfil equation (1), the value of the 
asymptotically invariant Nusselt number  is 48/11, i.e. 
the same value which holds for a uniform wall heat 
flux. This result is illustrated by numerical analysis of 
heat transfer in the thermal entrance region for wall 
heat fluxes given by qw(X) = q0(1 +ax)' ,  for various 
values of n. Obviously, wall heat fluxes which can be 
expressed in the form qw(X) = q0(1 +ax) n fulfil equa- 
tion (1). 
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NOMENCLATURE 

a constant employed in equation (22) T 
[m '] rb 

Co dimensionless constant employed in Tb~ ~ 

equation (16) 
c] constant employed in equation (18) 

[m] 
f dimensionless function of r employed 

in equation (10) 
fb bulk value o f f  
f .  functions of r employed in equation if 

(12) [m "1 u 
k thermal conductivity [W m-  ~ K-]] 
L length of the tube [m] x 
n dimensionless constant employed in 

equation (22) 
N~ number of intervals which define the 

mesh in direction r 
N~ number of intervals which define the 

mesh in direction x 7 
Nu Nusselt number, defined in equation 

(4) 
Nu~ asymptotic Nusselt number e, 
Pe Peclet number, Pe = 2roa/~ 
q~ wall heat flux [W m -2] g/ 
q0 wall heat flux at x = 0 

[V~ m -2] S t 

r radial coordinate [m] 
r0 radius of the tube [m] 9b 
r: radial coordinate at grid position 

(U~,j) [m] A 
Ar length of the intervals which define the 

mesh in direction r [m] 

temperature [K] 
bulk temperature [K] 
asymptotic value of the bulk 
temperature [K] 

T:v,j temperature at grid position (.IV.,, J) [K] 
To, 10T(t), --0TI2) inlet temperatures [K] 
T (~), T (2) solutions of equation (5) with 

To = T~0 I~ and To = T~j 2~, respectively 
[K] 
= T ( l l -  T (2) [K] 

axial component of the velocity [m s ~] 
mean value of u [m s-q  
axial coordinate [m] 

Ax0, Ax~ lengths of the intervals which define 
the mesh in direction x [m]. 

Greek symbols 
c~ thermal diffusivity [m 2 s '] 

dimensionless constant employed in 
the definition of thermal entry 
length 
constant employed in equation (9) 
[m-'] 
dimensionless radial coordinate, 
rl = r/ro 
dimensionless temperature defined in 
equation (24) 
bulk value of the dimensionless 
temperature 
dimensionless parameter, A = 2roPe a 
dimensionless axial coordinate, 

= x/(2roPe). 

ASYMPTOTIC BEHAVIOUR OF THE 
TEMPERATURE FIELD 

In this section, a laminar forced convection with 
a prescribed axial distribution of wall heat flux is 
considered, under the assumption that both axial con- 
duction and viscous dissipation in the fluid are neg- 
ligible. It is shown that the asymptotic value of the 
Nusselt number (i.e. its value for x ~ + ~ )  is inde- 
pendent of the radial distribution of the inlet tem- 
perature. Then, the asymptotic value of the Nusselt 
number is determined for a class of distributions of 
wall heat flux. 

Let us consider a circular tube crossed by a New- 
tonian fluid whose flow is steady, laminar, incom- 
pressible and fully developed. An axial distribution of 
wall heat flux is prescribed. If forced convection is 
considered, the fluid velocity is directed along the axis 
and its magnitude is given by the well known Pou- 
iseuille formula 

The bulk temperature is given by 

Tb(X) = T(x, r)u(r)r dr (3) 

while the local Nusselt number can be expressed as 

2roq~(x) 
Nu - k iT(x ,  ro) - Tb(x)] " (4) 

If both axial conduction and viscous dissipation in 
the fluid are negligible, the boundary value problem 
for the temperature distribution can be written as 

[ L (r°r  _ Or 
Or \ Or J o~ Ox 

T(O, r) = To(r) (5) 

0r[ 
Or 1~=~o = qw(x). 

Let us consider two boundary value problems with 
the same axial distribution of wall heat flux, q,(x) ,  
but with two different radial distributions of the inlet 
temperature, T~ol)(r) and T~02)(r). Let T;l)(x,r) and 
7~2)(x,r) be the solutions of equation (5) with 
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To(r) = T~oi)(r) and To(r) = Tg2)(r), respectively. 
Then, on account of equation (5), function 
T(x,r)  = T( l ) (x , r ) - l ' (2 ) (x , r )  is a solution of the 
boundary value problem 

[ O [ g'T'~ u(r)r OT 

7~(0, r) = T~oi)(r) -- rT)(r)  (6) 

k 8/'~ [ 0 

Equation (6) shows that 7~(x, r) can be interpreted 
as the fluid temperature field which develops within a 
tube with an adiabatic wall and a non-uniform inlet 
temperature Tg ') (r) -- Tg z) (r). It is well known that the 
temperature field tends to become uniform at sections 
sufficiently distant from x = 0 if the wall is adiabatic 
and no heat generation occurs within the fluid, for 
any radial distribution of the inlet temperature. In 
other words, the limit for x ~ + ov of 7~(x, r) is a 
constant. Therefore, for high values of x, the tem- 
perature fields 7~l~(x,r) and 7~2)(x,r) differ by a 
constant. Equations (3) and (4) show that only tem- 
perature differences are employed in the evaluation of 
the local Nusselt number. Therefore, in the limit x 
+ ~ ,  the local Nusselt number evaluated with the 

temperature field 7~U(x, r) equals the Nusselt number 
evaluated with T(2)( .~: ,  r). 

To summarize, the asymptotic behaviour of the 
Nusselt number can be determined independently of 
the boundary condition at x = 0. If one considers 
equation (5) and omits the boundary condition at 
x = 0, the reduced boundary value problem is given 
by 

" O ' ~T  u(r)r OT 

k O'-F (7) 
0 r  " : ~ o  = q w ( X ) .  

Any solution of equation (7) can be employed in 
equation (4) to determine the asymptotic behaviour 
of the Nusselt number. 

In the following, the evaluation of the asymptotic 
Nusselt number is performed for the axial dis- 
tributions of wall heat flux which fulfil the condition 

1 dqw(X) 
lim - -  - -  - 0 .  ( 8 )  

. . . . .  qw(X) dx 

To perform this evaluation, let us consider the 
boundary value problem 

L I ~T'~ u(r)r 07" 
Or l\ r Or ) -- c~ Ox 

(9) 
f3"/~ 

k~  ~- = qw(X) e ~ 
6r [r=r ° 

where qw(X) satisfie,; equation (8). Obviously, at the 
end of the calculation the limit e ~ 0 will be taken. A 

solution of equation (9) which holds for very large 
values of x has the form 

e gx 
T(x, r) = f(r)qw(X) ke"  (10) 

In fact, if x ~ + oo, by substituting equation (10) 
in equation (9) and by employing equations (2) and 
(8) one obtains 

I d ( r d f ~  2f~e / r 2 
~ - r t l  - ~T~\ Trr/= d)f (ll) 

Iff(r)  fulfils equation (11), then equation (10) is an 
asymptotic expression, for x ~ + oo, of the solutions 
of equation (9). For small values of g, equation (11) 
can be solved by the following perturbation method. 
Function f ( r )  can be expressed as a power series in e, 
namely 

f ( r )  = f0(r) +fl  (r)g+f2(r) a2 + . . . .  (12) 

By substituting equation (12) into equation (11), 
one obtains a boundary value problem for every order 
in the parameter e. The 0th order boundary value 
problem is 

{ d (rd/q 0 
~ t  ~)= 
dl° l  = (13) 
dr [,=,0 0 

while the 1st order boundary value problem is 

t d ( r d f l  ~ 2gt r 2 
m,t I° 
dJ/I  = 1  (14) 

dr I . . . .  " 

By employing the same method, one obtains the 
following boundary value problem at any order 
n > l :  

{ d (rdS', ~ 2a r 2 
mt 7'(1- I"-' 
di"l =o. (15) 

dr ],=~0 

On account of equation (13), f0 is a constant, i.e. 
fo(r) = co, so that equation (14) yields 

2~ 
Co = ~ -  (16) 

u r  o 

f l(r)  r 2 ( 1 - -  r2 
= ~-.2"] + cl. (17) 

ro \ 4roJ 

The integration constant cl can be determined by 
employing equation (15) for n = 2. In particular, one 
obtains 
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7 
cl = -- ~ r 0 .  (18) 

Therefore, at the first order in the parameter e, 
functionf(r) is given by 

2c~ I r 2 (  r4~ ) 7 1 f ( r )  = ar~ + 1-- -- ro ~ + ' " .  (19) 
Mr0 

On account of equations (2) and (19), the bulk value 
off(r)  evaluated at the first order in the parameter e 
is 

2~ 2e | ]--(~°[-r2/1-r2\ 7 7 
£ = - -  + - -  F r ~ ) -  ~ r o J u ( r ) r d r + ' -  

uro ar~ do kro k 

2c~ 
- + ( 2 0 )  

u r  0 

because the integral which appears in the term of order 
e is zero. By employing equations (10), (19) and (20), 
the limit e --+ 0 of the asymptotic value of the Nusselt 
number, Nu~o, can be easily evaluated : 

• 2roqw(X) e ';x ,. 2rog 
Nu~ = hm = n m - -  

~ o k [ T ( x ,  r o ) -  Tb(x)] =~0f(r0)--.£ 

2r0 48 
-- r0(l--~4)--74r0 -- --11------- 4.3636. (21) 

Equation (21) shows that, for every axial dis- 
tribution of the wall heat flux which fulfils equation 
(8) and for every prescribed radial distribution of the 
inlet temperature, the limit for x ---, + oo of the local 
Nusselt number is 48/11. Therefore, this value rep- 
resents the asymptotic value of Nu not only for uni- 
form wall heat flux [1], but also for any other axial 
distribution of wall heat flux which fulfils equation 
(8). This result will be illustrated in the following 
sections by a numerical analysis of the hydro- 
dynamically developed and thermally developing 

forced convection for some non-uniform axial dis- 
tributions of wall heat flux which satisfy equation (8). 

DIMENSIONAL ANALYSIS OF THE BOUNDARY 
VALUE PROBLEM 

In this section, the boundary value problem which 
describes the laminar forced convection in a circular 
tube with a prescribed wall heat flux qw(X)= 
q0(l +ax)" is written in a dimensionless form. 

Let us consider the forced convection problem 
described by equation (5), with an axial distribution of 
wall heat flux qw(X) = qo(l +ax)  n and with a uniform 
radial distribution of inlet temperature T(0, r) = To. 
Then equation (5) can be rewritten as 

I L { r O T )  _ u(r) r c~T 

Or \ Or J o~ OX 

T(0, r) = To (22) 

0T 
k T -  = q0(1 +ax)  =. 

L ~r I'='0 

The axial distribution of wall heat flux 
qw(X) = q0(1 + ax)" fulfils equation (8) for every value 
of qo, a and n. The axial variation of qw is illustrated 
in Fig. 1 for some values of n. 

Let us introduce the dimensionless radius ~/= r/ro, 
the Peclet number Pe = 2roa/ct, the dimensionless 
axial coordinate { = x/(2roPe) and the dimensionless 
parameter A = 2roPe a, so that equation (22) yields 

a {' aT'\  r/,, 2, 0T 

T(0, r/) = To (23) 

By substituting the dimensionless temperature 

3 

2.5 
n = 2  

2 n = l  

1.5 

1 n = °  

0.5 

0 0.5 1 1.5 2 2.5 3 

Fig. 1. Axial variation of the wall heat flux for various values of n. 

a x  
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,~ = k T -  To (24) 
qoro 

in equation (23), one obtains 

& ~8 r/ 2 
= ~ (1-,~ ) a~ 

0(0,  ~,) = 0 (25) 
/ 

On account of equation (25), the dimensionless 
temperature distribution is a function of ~ and t/which 
depends on the parameters A and n. 

By employing equation (4), the local Nusselt num- 
ber can be expressed as 

2ro qo (l + ax) ~ 
mu = (26) 

/c[T(x, r0) -- Tb(X)] " 

AS a consequence of equations (3) and (24), the 
bulk value of the dimensionless temperature is given 
by 

0b(~) = k Tb(x) -- To (27) 
qoro 

By employing equations (2), (3) and (24), ~gb(~) can 
also be expressed as 

= ~lf] 8(¢, r/)(1-qa)r/dr/. (28) 

Equation (28) ensures that 0b depends only on ~, A 
and n. On account of equations (24) and (27), equa- 
tion (26) can be rewritten as 

2(1 + A~)" 
Nu = (29) 

~9(¢, 1)--0b(~) ' 

Equation (29) proves that the local Nusselt number 
is a function of ¢, A and n. It is easily checked that for 
n = 0, the parameter A affects neither the dimen- 
sionless temperature 8 nor the local Nusselt number. 
Indeed, the case n := 0 corresponds to uniform wall 
heat flux and, as is well known, in this case the local 
Nusselt number depends only on ~ [1]. 

FINITE DIFFERENCE SOLUTION OF THE 
BOUNDARY VALUE PROBLEM 

In this section, a finite difference solution of the 
boundary value problem expressed by equation (22) 
is discussed. 

The numerical solution of the boundary value prob- 
lem (22) has been obtained by a finite difference 
method which employs a two-dimensional grid which 
is uniform with respect to r and non-uniform with 
respect to x. The linear system of equations obtained 
after the discretization has been solved by the suc- 
cessive overrelaxation method (SOR) [8]. The mesh 
has been obtained by the following method: the region 

0 < x < L is subdivided in Nx intervals with a variable 
length given by 

Axi = Axo i°'5, i = 1 . . . . .  Nx, (30) 

while the region 0 < r < r0 is subdivided in Nr inter- 
vals with a fixed length given by 

A r -  ro (31) 
N /  

The quantity Ax0 is determined by the nor- 
malization condition which requires that the sum of 
all the lengths Axl yields L. By this method, the mesh 
size in the x direction continuously decreases as x = 0 
is approached. This structure of the mesh allows a 
higher precision in the numerical evaluation of the 
temperature field at the beginning of the thermal 
entrance region where steep axial temperature vari- 
ations are expected. 

The bulk temperature can be evaluated exactly by 
employing the integral energy balance equation [8] 

dTb 2c~ 
d x  - karo qw. (32) 

Since qw(X) = q0(1 + ax)", equation (32) can be eas- 
ily integrated and yields 

2c~q0 (1 + a x )  "+ l  - 1 

Tb (x) = To + kftroa n + 1 (33) 

if n 4: - 1, and 

2 ~ a ,  
Tb(X) = To+ ~ l n ( l  +ax)  

Kuroa 
(34) 

if n = - 1 .  Equation (33) shows that, if n < - 1 ,  the 
bulk temperature tends to an asymptotic value for 
x --* + oe given by 

2c~q0 
Tb~ = To + karoa( ln[ -  1)" (35) 

The convergence of the overrelaxtion method has 
been obtained by evaluating the maximum value of 
the temperature change at any grid position in two 
subsequent iterations : the overrelaxation stops when 
this value is lower than 10 -11 times the temperature 
difference Tb(L) - To. 

A check on the global energy balance has been 
performed by comparing the exact value of Tb(L), 
evaluated either by equation (33) or by equation (34), 
with the value of Tb(L) obtained by a discrete sum 
approximation of the radial integral in equation (3), 
namely 

4Ar N'S" 1 =1 ( r ? )  r 2 ' I  r.. (36) 7"b(L) ~ jL  rNx.j 1 j 

This comparison has shown that the relative errors 
in the energy balance due to the numerical approxi- 
mation are less than 0.6%. 
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Table 1. Comparison of the numerical values of the local 
Nusselt number for n = 0 with those obtained analytically in 

ref. [9] 

N~= 60 N~= 80 N ~-  100 Cott~Ozisik 
N~= 300 N~ = 400 N~ = 500 [9] 

0.000200 21.202 21.464 21.643 21.558 
0.000300 18.367 18.708 18.833 18.790 
0.000400 16 .701  16.968 17.067 17.049 
0.000500 15.509 1 5 . 7 3 3  15.821 15.813 
0.000600 14.600 14.795 14.875 14.872 
0.000700 13.873 14.049 14.121 14.123 
0.000800 13 .271  13.436 13.502 13.506 
0.000900 12.767 12.919 12.980 12.985 
0.001000 12.334 12.475 12.532 12.538 
0.002000 9.8534 9.9442 9.9806 9.9863 
0.003000 8.6714 8.7409 8.7687 8.7724 
0.004000 7.9374 7.9950 8.0179 8.0200 
0.005000 7.4232 7.4730 7.4927 7.4937 
0.006000 7.0367 7.0811 7.0986 7.0986 
0.007000 6.7327 6.7729 6.7887 6.7881 
0.008000 6.4856 6.5226 6.5371 6.5359 
0.009000 6.2798 6.3142 6.3277 6.3261 
0.010000 6.1052 6.1375 6.1501 6.1481 
0.020000 5.1712 5.1934 5.2019 5.1984 
0.030000 4.7935 4.8123 4.8194 4.8157 
0.040000 4.6009 4.6182 4.6248 4.6213 
0.050000 4.4939 4.5106 4.5169 4.5139 
0.060000 4.4321 4.4485 4.4547 4.4522 
0.070000 4.3956 4.4120 4.4182 4.4162 
0.080000 4.3738 4.3902 4.3965 4.3949 
0.090000 4.3607 4.3772 4.3836 4.3823 
0.100000 4.3527 4.3693 4.3758 4.3748 
0.150000 4.3408 4.3580 4.3647 4.3645 
0.200000 4.3389 4.3565 4.3635 4.3637 

which correspond to A = 1 and  n = 0, n = 1, n = 2 is 
presented in Fig. 2. This figure shows how the thermal  
entry length increases with n. The thermal  entry length 
Lt, is usually defined as the duct  length required to 
achieve a value of  local Nussel t  n u m b e r  equal  to 7 
times (with 1' > 1) its fully developed value. The value 
of  ~ is arbi t rary  and  the usual choice is 7 = 1.05 [1]. 
The dimensionless thermal  entry length is defined as 
L*I = Lth/(2roPe). Indeed, with 7 = 1.05, the numeri-  
cal evaluat ion of  the local Nussel t  numbers  yields 
for A = 1 the following dimensionless thermal  entry 
lengths:  for n = 0 ,  L * = 0 . 0 4 3 3 ;  for n =  I, 
L* = 0.0466; for n = 2, L* = 0.0506. On the other  
hand,  with 7 = 1.005 one obta ins  for A = 1 the fol- 
lowing thermal  entry lengths:  for n = 0 ,  
L * , = 0 . 0 8 8 2 ;  for n =  1, L * , = 1 . 6 1 8 5 ;  for n = 2 ,  
L* = 4.5869. These results show how the thermal  
ent rance region becomes considerably longer as n 
increases. Figures 3 and  4 il lustrate the thermal  
entrance regions which cor respond to A = 1 and  
A = 100, for  n = 1 and  n = 2, respectively. Indeed, 
these figures show that ,  for fixed n, if  A is increased 
the thermal  entrance region tends to become longer. 
Finally,  Fig. 5 reveals that ,  for var ia t ions  of  n and  A 
within the intervals - 2  < n < - 1 and  0.1 < A < 1, 
the thermal  ent rance region does not  sensibly change.  

In Table  1, the numerical  values of  the local Nussel t  
n u m b e r  are reported as a funct ion of  ~ in the case of  
un i form wall heat  flux (n = 0) and  compared  with 
those obta ined  by an  analytical  me thod  in ref. [9]. The 
values obta ined  in ref. [9] are a lmost  identical with 
those presented in ref. [1]. Three numerical  solutions 
are reported in Table  1: one cor responding  to Nr = 60 
and  Nx = 300, one cor responding  to Nr = 80 and  
N x = 4 0 0  and  one obta ined  with N r =  100 and  
Nx = 500. The  compar i son  of  these numerical  results 
with the benchmark  solut ion obta ined  in ref. [9] shows 
how the increase of  the n u m b e r  of  grid points  deter- 
mines the convergence to the exact solution. The 
numerical  results repor ted in Table  1 are affected by 
a relative error  which is higher  at  low values of  ~. This 
behav iour  can be explained as follows. Since axial 
conduc t ion  in the fluid is neglected, the local Nussel t  
n u m b e r  tends to infinity in the limit ~ -* 0. Therefore,  
the tempera ture  gradient  in the ne ighbourhood  of  

= 0 is so steep tha t  a finite difference solut ion loses 
its precision at very low values of  4. This happens  in 
spite of  our  choice of  a mesh whose size cont inuously  
decreases as ~ = 0 is approached.  

A compar i son  between the thermal  entrance regions 

CONCLUSIONS 

Forced laminar  convect ion in a circular tube with 
a fully developed velocity profile and  a prescribed 
axial d is t r ibut ion of  wall heat  flux has  been 
considered. The effects of  axial conduc t ion  and vis- 
cous dissipat ion in the fluid have been neglected. It 
has been proved tha t  all the axial d is t r ibut ions  of  wall 
heat  flux which fulfil equa t ion  (1) yield an  asymptot ic  
thermally  developed regime. The asymptot ic  value 
reached by the Nussel t  n u m b e r  is the same for all 
these axial dis t r ibut ions of  wall heat  flux and  equals 
48/11, i.e. the thermal ly  developed value of  the Nussel t  
n u m b e r  which occurs for axially un i fo rm wall heat  
flux. Obviously,  a un i fo rm axial d is t r ibut ion of  wall 
heat  flux fulfils equa t ion  (1) as well as, for instance, 
all axial dis t r ibut ions which can be expressed as 
qw(X) = q0(1 +ax) ' .  It has been shown tha t  the ther- 
mally developing local Nussel t  n u m b e r  for wall heat  
fluxes given by qw(X)= q0(1 +ax)  n depends on the 
parameters  ¢ = x/(2roPe), A = 2roPea and  n. The 
thermally  developing local Nussel t  n u m b e r  for 
qw(x) = q0(1 +ax)" has  been determined by a finite 
difference method,  for some values of  n and  A. 
Numerica l  results show tha t  the local Nussel t  n u m b e r  
tends to 48/11 for x--* + oo. Moreover ,  for positive 
values of  n, it has  been found tha t  the thermal  entry 
length increases considerably with n for a fixed value 
of  A, and  tha t  the thermal  entry length increases with  
A for  a fixed value of  n. 
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